
Multiple phase coexistence and the scaling transformation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1983 J. Phys. A: Math. Gen. 16 1019

(http://iopscience.iop.org/0305-4470/16/5/020)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 17:05

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/16/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 16 (1983) 1019-1033. Printed in Great Britain 

Multiple phase coexistence and the scaling transformation 

D W Wood and A H Osbaldestin 
Mathematics Department, University of Nottingham, Nottingham, NG7 2RD, UK 
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Abstract. It is shown that a simple extension of the finite size scaling method in the theory 
of critical phenomena can yield a sequence of approximants to any point subset of the 
interaction parameter space where multiple phase coexistence is possible. The method is 
illustrated by an application to the three-, four- and five-state Potts models, and even in 
its lowest order of approximation is able to distinguish the difference in the zero-field 
critical behaviour between the five-state and the three- and four-state models. 

1. Introduction 

The present authors (Wood and Osbaldestin 1982) have shown how the scaling 
transformation of Kadanoff (Kadanoff et a1 1967), when adapted for use on semi- 
infinite lattice model systems (Nightingale 1976, 1977, Sneddon 1978, Nightingale 
and Blote 1980, Blote et a1 1981, Sneddon and Stinchcombe 1979, Hamer and Barber 
1980, Roomany et af 1980, Wood and Goldfinch 1980, Goldfinch and Wood 1982, 
Blote and Nightingale 1982), naturally yields a sequence of approximants to the entire 
phase equilibrium surface of the model in the space of its interaction parameters. The 
calculations of Wood and Osbaldestin on the two-dimensional Ising and Potts models 
show that even in the lowest order the approximants yield a coexistence surface X 
close to the exact limiting surface. The method has also been demonstrated in a 
subsequent calculation by Osbaldestin and Wood (1982), who have obtained the form 
of the phase equilibrium surface of the three-state antiferromagnetic Potts model in 
the presence of its ordering fields 

Once the outline form of Z has been fully obtained in such calculations, one can 
of course identify subsets of points of Z where various forms of multiple phase 
coexistence are possible. In constructing phase equilibrium surfaces from calculations 
of this type where there may be several interaction parameters, it would clearly be 
very helpful to be able to project independently out of X the various point subsets 
on which multiple phase coexistence is possible. Such a technique would also be of 
interest in its own right. The purpose of the present paper is to show that the scaling 
transformation and the general technique of the method can be simply extended to 
provide approximants for each point subset of 2 where a given order of multiple 
coexistence is possible. 

The theoretical background to this extension of the finite size scaling calculations 
is given in 9 2, and is then illustrated in § 3 with specific calculations on the three-, 
four- and five-state ferromagnetic Potts models in their ordering fields (for a review 
of the Potts model see Wu (1982)). Previous studies of Potts models using finite 
lattice calculations have been made by Hamer and Barber (1981), Roomany and Wyld 
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(1980), Hamer (1981) and Herrman (1981). These calculations have been performed 
in the lowest order of approximation which the technique will allow, and in every 
case the appropriate point subsets of Z where multiple coexistence is possible are 
clearly indicated. Some of the boundary points of these subsets are known exactly, 
and even the lowest approximants seem to yield very good approximations to these 
points. The results for the five-state Potts model show how powerful the technique 
is. For the ferromagnetic Potts models all the phase transitions in zero field are first 
order for q >4 (Baxter 1973), and thus along the zero-field line in the five-state 
model we expect to see just one point where the disordered phase can coexist with 
the five varieties of ordered phase; this is a point of sixfold phase coexistence. The 
technique described here faithfully represents this phenomenon, and is thus able to 
identify the difference in critical behaviour between the q < 5 and the q 2 5  Potts 
models. 

2. Coexistence and degeneracy 

A general mathematical mechanism to describe a phase transition originally advanced 
by Kac (1968) is the construction of a linear operator from the Hamiltonian, the 
largest eigenvalue of which yields the thermodynamic free energy density. Kac argues 
that the degeneracy of this eigenvalue can be quite generally associated with a phase 
transition, and marks the appearance of two stable macroscopic states. Kac's illustra- 
tions of this view were on long-range force models, where specific types of pair 
p.otentials on lattice models naturally produced the above operator as the kernel of 
a Hilbert-Schmidt integral equation (for a review see Hemmer and Lebowitz (1976)). 
For latttice model Hamiltonians with short-range forces this operator is the transfer 
matrix (for reviews of these methods see Lieb and Wu (1972), Thompson (1972) and 
Wood (1975); for an account of asymptotic degeneracy see Domb (1960)). 

Consider an N-site lattice model subdivided into a one-dimensional sequence of 
subsystems of n sites; for example, the successive columns of a square net lattice form 
such a sequence. If we denote and index the spin configurations of two neighbouring 
subsystems by c-r and a' then the transfer matrix elements are given by 

Tu,u, = exp(-P[U(a)/2 + U ( a ' ) / 2  + W ( a ,  U' ) ] }  (P  = l / k T )  (1) 

where W ( a ,  a') is the interaction energy between neighbouring subsystems in 
configurations a and a' and U ( @ )  and U ( a ' )  are the self-energies of each subsystem. 
The partition function ZN and the free energy FN are given by 

-PFN ( K )  = In (K) = In [h  y'" ( K )  + A 2"" ( K )  + . . . + A K'"K)] (2) 

where Cl is the number of configurations possible in a subsystem, and K is the set of 
reduced interaction parameters of the model. In regions of K space where the largest 
eigenvalue of T is asymptotically non-degenerate in the thermodynamic limit (N, n )  + 
03, the free energy density f ( K )  is given by 

1 1 p f ( K ) =  lim -lnZN(K)= lim - lnAI(K) 
N-m N n - x  n (3) 

where A is the largest eigenvalue of T. The probability P, (a) that the n sites of a 
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given subsystem will be in a specific spin configuration U is given by 
n 

i 
P,(u) = 1 A Y ' " ~ , ( U ) ~ / Z N  ( h 1 > A 2 S A 3 3 . . . ) ,  (4) 

where qi(a) are the elements of the eigenvector qi corresponding to the eigenvalue 
hi. In the above non-degenerate subspace of K 

Suppose we take a point in K space where the largest eigenvalue of T is asymptoti- 
cally twofold degenerate, which now has the two corresponding eigenvectors cp1 and 
q2. From (4), on the assumption that 

ZN - 2h ?In ( N / n  large), (6a)  

we obtain 

n-m lim ~ , ( a ) = t c p l ( ~ ) ~ + t c p 2 ( ~ ) ~  =P, (u)  (66 1 

and adopting Kac's viewpoint it seems natural to associate the eigenvectors q 1  and 
q2 with the two possible stable phases (phases 1 and 2 say) which the system can 
adopt. Thus if we use P ( a )  and P(alb) to  denote the probability of event a, and the 
conditional probability of event a given b respectively, then our physical interpretation 
of ( 6 )  takes the form 

P ~ ( u )  = P(1)Pm(c+/l) +P(2)Pm(012) (7) 
where P(1) = P ( 2 )  = i. In the case of regions of K space where the largest eigenvalue 
of T is asymptotically 1-fold degenerate, equations (6), (7) and their interpretation 
generalise to the form 

where cpl ,  q 2 , .  . . , qi are the eigenvectors of the maximum eigenvalue. In terms of 
our interpretation (6) ,  if g (a )  represents some function of a single spin, then the 
ensemble expectation value of g takes the form 

(10) 

where (T is a specific spin in U, and again it seems natural to interpret (ql, gql)  as the 
mean value of g in phase i .  

We will now assume that our lattice models are defined in terms of site variables 
ci ( i  = 1, 2, . . . , N )  which can adopt a finite number of specific values, say 
cyl ,  az ,  . . . , aq. It is convenient to think in terms of the population densities 
regions where the spin states a = a, are favoured can be thought of as i-rich regions. 
Here we are interested in the expectation (Sm(0) ,a ,So( , ) ,a , )  where a ( 0 )  and a ( r )  refer 
to two corresponding spins in the n-site subsystems a distance r apart, thus 

(g) = b l ,  g(a)q1) + b 2 ,  g(cr)cpz) 

( a n ( o ) , a , ~ c t r ) , a , )  = P M ~ )  = na(o) =cy,) (11) 
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and is a measure of the probability that a(r) is in a state ai, and that the corresponding 
spin at the origin is in a state ai. In the absence of a long-range correlation between 
the spin states we expect that 

for translationally symmetric systems. Thus on a lattice of N sites we define the 
correlation between spins at 0 and r by the correlation 

which in the case of a system in one homogeneous phase is the same as the so-called 
correlation of fluctuations 

C,(r) = ((Su(o).a, - (&,a , ) )  (Su(r) ,a ,  - (au,a i ) ) )  (14) 
(Kadanoff et a1 1967). An evaluation of (11) ca.1 readily be developed in terms of 
the transfer matrix and the result is 

where S , , a i c p ( ~ )  is the element CT of cpi multiplied by for a specific spin in U ,  and 
r is usually the number of lattice spacings between the corresponding spins a(0) and 
a ( r )  in two subsystems. Thus in the subspace of K in which A1 is asymptotically 
non-degenerate 

showing that a finite correlation over an infinite range is possible only in regions of 
K space where A is asymptotically degenerate. 

Consider now the subspace of K where A 1 is asymptotically degenerate. We would 
like an interpretation of (11) and (12) corresponding to the interpretation of P n ( a )  
in (66); however, the uncorrelated terms corresponding to the limit r + CO take on a 
more complicated structure with respect to the macroscopic phases when these are 
represented by cpl and cp2. In this subspace (15) yields 

P , ( ~  ( r )  = ai n a(o) = ai) 
1 2 1  2 

= ? ( ( P I ,  Su.aiq1) + T ( ( P ~ ,  ~ u , a i ( ~ 2 ) ~  + ~ u , a i ( ~ 2 )  

where the correlation between spins ( ~ ( 0 )  and a ( r )  is represented by the correlation 
function 

1 2 1  2 ~ a 3 ( r )  = ~ a 3 ( a ( r )  =ai n c m = + 5 ( c p o l ,  ~ u . a ~ c ~ 1 )  - T ( ( P ~ ,  ~ u , a i ( ~ 2 )  - ( C P ~ ,  ~ u . a ~ c p 2 ) ~ .  (19) 
In (19) the first two terms clearly represent the expectation that a site is in state ai 
in phases 1 and 2 respectively. The mixed term, however, is not an expectation of 
this type, but could be thought of as a transition probpbility that a given site remains 
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in state ai in a transition from one phase to the other. Thus our interpretation of (18) 
would be 

l " (g( r )=a i  n ~ ( 0 )  =ai) 

= P ( I ) P , ( ~  = ai11)2+~(2)~00(g =aiJz)' 

+P& = a i / a  transition 1 ~ 2 )  +Cm(r) (20) 

and the measure of the correlation is 

Suppose that the two stable phases in (20) are a1 and a2 rich phases; then (21) 
shows that a finite long-range correlation between sites a(0) and a(r) being in a third 
state ak is only possible when A 1  is asymptotically threefold degenerate. This long- 
range correlation is precisely how we would describe the emergence of a third coexisting 
phase. Thus we can take asymptotic threefold degeneracy in A1 to mark out the 
subspace K where triple points are possible. We can also define the characteristic 
range of correlation for a third species within the domain of two coexisting phases in 
the usual way by 

6 ( K )  = - l/ln(A3/A1). (22) 

The arguments leading to (21) and (22) can obviously be extended to represent p 
coexisting phases. In a subspace of K where A 1 is asymptotically (p - 1)-fold degener- 
ate, the measure of correlation corresponding to (21), denoted by Cp,m(r), is 

Thus if al,, , . , ap-l rich phases are the coexisting phases, the emergence of an 
additional stable phase is possible only if T becomes asymptotically p -fold degenerate. 
We can define the characteristic correlation length associated with the growth of this 
new phase by tp where 

6, = - l / W P / A l ) .  (24) 
Thus t2 is the usual coherence length, associated with the correlation of fluctuations 
in (14). 

The application of the above to finite size scaling calculations now follows from 
(24) and Wood and Osbaldestin (1982). If the system is held at a point in K space 
where p-fold coexistence is possible, then T is asymptotically (N, n -+CO) p-fold 
degenerate and 5, diverges everywhere in K space where such coexistence is possible, 
and is therefore absolutely invariant to any spacial rescaling of the assembly. In terms 
of the scaling relation 

&(K')  = (1/L) 5P(K) (25) 
when applied to the various types of coexistence, we can readily use the finite size 
scaling method to construct a sequence of approximants to point subsets of K space 
where p-fold coexistence is possible. 

+ Fisher (1969) has giveii an identification of tz at points on the coexistence sheet in terms of the interfacial 
surface tension. 
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3. Multiple phase coexistence in the Potts models 

To illustrate the above theoretical discussion we have performed finite size scaling 
calculations based upon (25) for the two-dimensional ferromagnetic Potts model on 
a square net lattice for the cases 4 = 3 , 4  and 5 .  As in previous calculations (Wood 
and Osbaldestin 1982), the q m  x q m  transfer matrix is defined by (1) with U and U ’  
being neighbouring columns of m sites on an m x 00 lattice. We denote the correlation 
length (24) for such a system by [,(m) which is the characteristic length on an m x 03 

lattice. Thus, taking 6;” and [;”” as &(K’)  and [,(K) respectively in (25) with 
L = 1 + l /m,  the functions 

define a sequence on m where the zero contour qm,, = 0 is an mth-order approximant 
to the point subsets of K space where p-fold phase coexistence can occur. 

The Hamiltonian of the q-state Potts model in the presence of its ordering fields 
is given by 

where ui (i = 1,2,  , . , , N )  can take the values 1 , 2 , .  . . , q, hi is the ordering field of 
species j ,  and where in addition we impose the condition 

The first summation in (27) is over all nearest-neighbour pairs of sites. To simplify 
the discussion of phase coexistence we set hl = h and consider the fields h2,  h 3 ,  . , , , h, 
to be equal; thus 

X , V = - J C S ~ , , ~ , - - ~  C [ S u ~ , 1 - ( S o , , 2 + S u , , 3 + .  . .+Su,,q)/(q-1)].  (29) 
nn I 

For regions of (T,  h )  space where h 1 is large and negative and where hz = h3 = a * = 

h,, we expect the thermodynamic behaviour to be close to that of the (q - 1)-state 
Potts model in zero field since species 1 is suppressed and the ordering fields of the 
other species are all equal. In such a region of (T, h )  space (at low enough tem- 
peratures) we expect to see (q - 1)-fold phase coexistence, and in the limit h +--CO 

we expect the temperature range over which (q  - 1) phase coexistence can occur to 
be that of the (q  - 1)-state Potts model in the zero field (this is the range O<T < T, = 
J In[l + (q  - l)’”]/k). Thus for the model of (291, h < 0, approximants 
q m , 2 ,  q m . 3 , .  . . , pm,q-l of (26) should all converge to the same region of (T,  h )  space. 
Clearly q-fold phase coexistence for the model (27) is only possible for h = 0, and 
thus we expect to see the zero contour of the approximant (P,,,~ approximate the line 
segment CO > K > K, = ln(1 +Jq) ,  (K = 0.T). If the endpoint of this line segment K, 
is a first-order transition point, which for q > 4  it is (in two dimensions, Baxter (1973)), 
then at this point (q  + 1)-fold phase coexistence is possible, where the additional phase 
is the high-temperature disordered phase. Attempts to project out all of these point 
subsets of (T, h )  space can be made by using (26) with p = 2 ,3 , .  . . , q + 1. The 
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calculations reported here have been completed for the cases m = 2 and 4 = 3, 4 and 
5.  

The results for the three-state Potts model are shown in figures l (a) ,  ( b )  and (c). 
The contours of figure l ( a )  are those discussed previously (Wood and Osbaldestin 
1982). The region of two-phase coexistence, which is the coexistence surface 2, is a 
sheet of points inside h < O  bounded by a line of critical points; this is represented 
by (p2,2 as the large and almost flat-topped hill enclosed by the zero contour. The 
broken line is a schematic representation of the exact limiting form of 2. We expect 
the small thumb-like loop inside h > O  to converge to the zero-field critical point at 
A, which is at K,= 1.0050. . . . The first example of the claims in § 2 is provided by 
figure 1(b)  showing the contours of (p2,3(K, h )  where the zero contour represents an 
approximation to the line of triple points on h = 0 given by K ,  <K < 03. The approxi- 
mation even at this low order emerges as a narrow hairpin-like enclosure of the exact 
line segment. The loop intersects the h = O  line in an approximation to K,, and the 
contour map here is very similar to that obtained for the simple Ising model (Wood 
and Osbaldestin 1982). We know that K ,  is a second-order critical point (Baxter 
1973), thus the point (K,, 0) is not a quadruple point where the disordered phase 
coexists with the three ordered phases. This ‘negative’ result is reflected in the contours 
of (p2.4 shown in figure l (c )  where the zero contour does not exist. 

The corresponding sequence of results for the four-state Potts model is shown in 
figures 2(a), (b ) ,  ( e )  and (d). Again the whole coexistence surface is approximated 
by and again is a continuous plateau-like region bounded by the zero contour 
inside h < 0. For the four-state Potts model we expect to see three-phase coexistence 
on 2 inside h < 0: (p2.3 for this model shown in figure 2(b) depicts the same plateau-like 
region as in figure 2(a) which is a sheet of triple points. Inside h < O  the contours of 
2(a) and 2(6) are identical. Four-phase coexistence is only possible on the zero-field 
line, and the line segment K,  < K < 00 is again approximated by a hairpin-like enclosure 
of this segment by the zero contour of (p2.4, which now shows a marked asymmetry 
about h = 0. Again no evidence of five-phase coexistence is obtained, and the contours 
of (p2,5 contain no zero contour; these are shown in figure 2(d). If we accept the 
interpretation of § 2, then the absence of zero contours in both figures l (c )  and 2(d)  
is of course a statement that the thumb-like extensions of the zero contours in figures 
l (a )  and 2(a) will converge to the single point K,, and that coexistence with the 
disordered phase is not possible for the three- and four-state Potts models. 

The corresponding results for the five-state Potts model are shown in the sequence 
of figures 3(a), ( b ) ,  ( c )  and ( d ) .  The whole Z surface indicated by figure 3(a) appears 
to be qualitatively the same as that found for the three- and four-state Potts models, 
the only slight difference being that the thumb-like extension of the zero contour 
inside h > O  is here slightly larger. Here we would expect that the plateau enclosed 
by the zero contour is a sheet of quadruple points inside h < 0. The contours of p 2 , 3  

and (02.4 are indentical for the five-state Potts model and are shown in figure 3 ( b ) ,  
and clearly mark out Z as being a sheet of fourfold coexistence inside h < 0. Again 
the contours of figure 3(a) and 3(b)  inside h < O  are identical. Figures l (a ) ,  2(a) and 
3(a) all show the zero contour to be approximating the zero-field critical point of the 
corresponding (4 - 1)-state Potts model in the limit h + -00 ;  these points are marked 
B on the figures. The same hairpin-like enclosure of the zero-field segment K ,  < K < 00 

appears in the zero contour of (p2,5 marking out fivefold phase coexistence. However, 
when we look for sixfold coexistence in the contours of (p2 .6  we find that this time the 
technique has detected this as a phenomenon characteristic of this model. Here the 
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zero contour of (p2.6 exists and appears as a small ring centred on the zero-field point 
K,, and thus faithfully records the model to have only first-order transitions in zero 
field. We expect the sequence of zero contours of (pm.6 to converge rapidly onto the 
point K ,  = l n ( l +  J5). 

4. Summary 

The authors have shown that the finite size scaling method, apart from being a method 
which naturally yields a sequence of approximants to the whole phase coexistence 
surface E, can be simply extended into a technique giving a parallel sequence of 
approximants for any point subset of Z where multiple phase coexistence is possible. 
The scheme has been illustrated by applications to the three-, four- and five-state 
Potts models on the two-dimensional quadratic lattice. Even in the lowest order of 
approximation, the scheme gives overall results which are clearly very close to the 
exact results, and also yields a faithful representation of the important qualitative 
differences between the five-state and three- and four-state Potts models. 

We have now shown that the method of finite size scaling analysis based upon 
Kadanoff’s simple scaling relation (25), as originally implemented by Nightingale 
(1976), does not select in its solutions simply the critical points of the phase diagram. 
These solutions are really approximations to points on the boundary of the whole 
coexistence surface. Our appraisal of the finite size scaling technique with regard to 
the present application and its extension to obtaining very accurate exponents (Blote 
and Nightingale 1982, Wood and Goldfinch 1980) is that it is potentially the most 
powerful computational method in the theory of phase transitions. 
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